#!/usr/bin/env python from ctypes import * from ctypes.util import find_library from os import path import sys try: dirname = path.dirname(path.abspath(__file__)) if sys.platform == 'win32': liblinear = CDLL(path.join(dirname, r'..\windows\liblinear.dll')) else: liblinear = CDLL(path.join(dirname, '../liblinear.so.1')) except: # For unix the prefix 'lib' is not considered. if find_library('linear'): liblinear = CDLL(find_library('linear')) elif find_library('liblinear'): liblinear = CDLL(find_library('liblinear')) else: raise Exception('LIBLINEAR library not found.') # Construct constants SOLVER_TYPE = ['L2R_LR', 'L2R_L2LOSS_SVC_DUAL', 'L2R_L2LOSS_SVC', 'L2R_L1LOSS_SVC_DUAL',\ 'MCSVM_CS', 'L1R_L2LOSS_SVC', 'L1R_LR', 'L2R_LR_DUAL', \ None, None, None, \ 'L2R_L2LOSS_SVR', 'L2R_L2LOSS_SVR_DUAL', 'L2R_L1LOSS_SVR_DUAL'] for i, s in enumerate(SOLVER_TYPE): if s is not None: exec("%s = %d" % (s , i)) PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p) def print_null(s): return def genFields(names, types): return list(zip(names, types)) def fillprototype(f, restype, argtypes): f.restype = restype f.argtypes = argtypes class feature_node(Structure): _names = ["index", "value"] _types = [c_int, c_double] _fields_ = genFields(_names, _types) def __str__(self): return '%d:%g' % (self.index, self.value) def gen_feature_nodearray(xi, feature_max=None, issparse=True): if isinstance(xi, dict): index_range = xi.keys() elif isinstance(xi, (list, tuple)): xi = [0] + xi # idx should start from 1 index_range = range(1, len(xi)) else: raise TypeError('xi should be a dictionary, list or tuple') if feature_max: assert(isinstance(feature_max, int)) index_range = filter(lambda j: j <= feature_max, index_range) if issparse: index_range = filter(lambda j:xi[j] != 0, index_range) index_range = sorted(index_range) ret = (feature_node * (len(index_range)+2))() ret[-1].index = -1 # for bias term ret[-2].index = -1 for idx, j in enumerate(index_range): ret[idx].index = j ret[idx].value = xi[j] max_idx = 0 if index_range : max_idx = index_range[-1] return ret, max_idx class problem(Structure): _names = ["l", "n", "y", "x", "bias"] _types = [c_int, c_int, POINTER(c_double), POINTER(POINTER(feature_node)), c_double] _fields_ = genFields(_names, _types) def __init__(self, y, x, bias = -1): if len(y) != len(x) : raise ValueError("len(y) != len(x)") self.l = l = len(y) self.bias = -1 max_idx = 0 x_space = self.x_space = [] for i, xi in enumerate(x): tmp_xi, tmp_idx = gen_feature_nodearray(xi) x_space += [tmp_xi] max_idx = max(max_idx, tmp_idx) self.n = max_idx self.y = (c_double * l)() for i, yi in enumerate(y): self.y[i] = y[i] self.x = (POINTER(feature_node) * l)() for i, xi in enumerate(self.x_space): self.x[i] = xi self.set_bias(bias) def set_bias(self, bias): if self.bias == bias: return if bias >= 0 and self.bias < 0: self.n += 1 node = feature_node(self.n, bias) if bias < 0 and self.bias >= 0: self.n -= 1 node = feature_node(-1, bias) for xi in self.x_space: xi[-2] = node self.bias = bias class parameter(Structure): _names = ["solver_type", "eps", "C", "nr_weight", "weight_label", "weight", "p"] _types = [c_int, c_double, c_double, c_int, POINTER(c_int), POINTER(c_double), c_double] _fields_ = genFields(_names, _types) def __init__(self, options = None): if options == None: options = '' self.parse_options(options) def __str__(self): s = '' attrs = parameter._names + list(self.__dict__.keys()) values = map(lambda attr: getattr(self, attr), attrs) for attr, val in zip(attrs, values): s += (' %s: %s\n' % (attr, val)) s = s.strip() return s def set_to_default_values(self): self.solver_type = L2R_L2LOSS_SVC_DUAL self.eps = float('inf') self.C = 1 self.p = 0.1 self.nr_weight = 0 self.weight_label = (c_int * 0)() self.weight = (c_double * 0)() self.bias = -1 self.cross_validation = False self.nr_fold = 0 self.print_func = cast(None, PRINT_STRING_FUN) def parse_options(self, options): if isinstance(options, list): argv = options elif isinstance(options, str): argv = options.split() else: raise TypeError("arg 1 should be a list or a str.") self.set_to_default_values() self.print_func = cast(None, PRINT_STRING_FUN) weight_label = [] weight = [] i = 0 while i < len(argv) : if argv[i] == "-s": i = i + 1 self.solver_type = int(argv[i]) elif argv[i] == "-c": i = i + 1 self.C = float(argv[i]) elif argv[i] == "-p": i = i + 1 self.p = float(argv[i]) elif argv[i] == "-e": i = i + 1 self.eps = float(argv[i]) elif argv[i] == "-B": i = i + 1 self.bias = float(argv[i]) elif argv[i] == "-v": i = i + 1 self.cross_validation = 1 self.nr_fold = int(argv[i]) if self.nr_fold < 2 : raise ValueError("n-fold cross validation: n must >= 2") elif argv[i].startswith("-w"): i = i + 1 self.nr_weight += 1 nr_weight = self.nr_weight weight_label += [int(argv[i-1][2:])] weight += [float(argv[i])] elif argv[i] == "-q": self.print_func = PRINT_STRING_FUN(print_null) else : raise ValueError("Wrong options") i += 1 liblinear.set_print_string_function(self.print_func) self.weight_label = (c_int*self.nr_weight)() self.weight = (c_double*self.nr_weight)() for i in range(self.nr_weight): self.weight[i] = weight[i] self.weight_label[i] = weight_label[i] if self.eps == float('inf'): if self.solver_type in [L2R_LR, L2R_L2LOSS_SVC]: self.eps = 0.01 elif self.solver_type in [L2R_L2LOSS_SVR]: self.eps = 0.001 elif self.solver_type in [L2R_L2LOSS_SVC_DUAL, L2R_L1LOSS_SVC_DUAL, MCSVM_CS, L2R_LR_DUAL]: self.eps = 0.1 elif self.solver_type in [L1R_L2LOSS_SVC, L1R_LR]: self.eps = 0.01 elif self.solver_type in [L2R_L2LOSS_SVR_DUAL, L2R_L1LOSS_SVR_DUAL]: self.eps = 0.1 class model(Structure): _names = ["param", "nr_class", "nr_feature", "w", "label", "bias"] _types = [parameter, c_int, c_int, POINTER(c_double), POINTER(c_int), c_double] _fields_ = genFields(_names, _types) def __init__(self): self.__createfrom__ = 'python' def __del__(self): # free memory created by C to avoid memory leak if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C': liblinear.free_and_destroy_model(pointer(self)) def get_nr_feature(self): return liblinear.get_nr_feature(self) def get_nr_class(self): return liblinear.get_nr_class(self) def get_labels(self): nr_class = self.get_nr_class() labels = (c_int * nr_class)() liblinear.get_labels(self, labels) return labels[:nr_class] def is_probability_model(self): return (liblinear.check_probability_model(self) == 1) def toPyModel(model_ptr): """ toPyModel(model_ptr) -> model Convert a ctypes POINTER(model) to a Python model """ if bool(model_ptr) == False: raise ValueError("Null pointer") m = model_ptr.contents m.__createfrom__ = 'C' return m fillprototype(liblinear.train, POINTER(model), [POINTER(problem), POINTER(parameter)]) fillprototype(liblinear.cross_validation, None, [POINTER(problem), POINTER(parameter), c_int, POINTER(c_double)]) fillprototype(liblinear.predict_values, c_double, [POINTER(model), POINTER(feature_node), POINTER(c_double)]) fillprototype(liblinear.predict, c_double, [POINTER(model), POINTER(feature_node)]) fillprototype(liblinear.predict_probability, c_double, [POINTER(model), POINTER(feature_node), POINTER(c_double)]) fillprototype(liblinear.save_model, c_int, [c_char_p, POINTER(model)]) fillprototype(liblinear.load_model, POINTER(model), [c_char_p]) fillprototype(liblinear.get_nr_feature, c_int, [POINTER(model)]) fillprototype(liblinear.get_nr_class, c_int, [POINTER(model)]) fillprototype(liblinear.get_labels, None, [POINTER(model), POINTER(c_int)]) fillprototype(liblinear.free_model_content, None, [POINTER(model)]) fillprototype(liblinear.free_and_destroy_model, None, [POINTER(POINTER(model))]) fillprototype(liblinear.destroy_param, None, [POINTER(parameter)]) fillprototype(liblinear.check_parameter, c_char_p, [POINTER(problem), POINTER(parameter)]) fillprototype(liblinear.check_probability_model, c_int, [POINTER(model)]) fillprototype(liblinear.set_print_string_function, None, [CFUNCTYPE(None, c_char_p)])